| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543 |
- /*
- * Basic JavaScript BN library - subset useful for RSA encryption.
- *
- * Copyright (c) 2003-2005 Tom Wu
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
- * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- *
- * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
- * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
- * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
- * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
- * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * In addition, the following condition applies:
- *
- * All redistributions must retain an intact copy of this copyright notice
- * and disclaimer.
- */
- /*
- * Added Node.js Buffers support
- * 2014 rzcoder
- */
- var crypt = require('crypto');
- //var isNumber = require('lodash.isnumber'); // Remove this dependency to limit supply chain risks
- function isObjectLike(value) { return !!value && typeof value == 'object'; }
- const isNumber = function isNumber(value) { return typeof value == 'number' || (isObjectLike(value) && Object.prototype.toString.call(value) == '[object Number]'); }
- // Bits per digit
- var dbits;
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary & 0xffffff) == 0xefcafe);
- // (public) Constructor
- function BigInteger(a, b) {
- if (a != null) {
- if ("number" == typeof a) {
- this.fromNumber(a, b);
- } else if (Buffer.isBuffer(a)) {
- this.fromBuffer(a);
- } else if (b == null && "string" != typeof a) {
- this.fromByteArray(a);
- } else {
- this.fromString(a, b);
- }
- }
- }
- // return new, unset BigInteger
- function nbi() {
- return new BigInteger(null);
- }
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- function am1(i, x, w, j, c, n) {
- while (--n >= 0) {
- var v = x * this[i++] + w[j] + c;
- c = Math.floor(v / 0x4000000);
- w[j++] = v & 0x3ffffff;
- }
- return c;
- }
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- function am2(i, x, w, j, c, n) {
- var xl = x & 0x7fff, xh = x >> 15;
- while (--n >= 0) {
- var l = this[i] & 0x7fff;
- var h = this[i++] >> 15;
- var m = xh * l + h * xl;
- l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
- c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
- w[j++] = l & 0x3fffffff;
- }
- return c;
- }
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- function am3(i, x, w, j, c, n) {
- var xl = x & 0x3fff, xh = x >> 14;
- while (--n >= 0) {
- var l = this[i] & 0x3fff;
- var h = this[i++] >> 14;
- var m = xh * l + h * xl;
- l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
- c = (l >> 28) + (m >> 14) + xh * h;
- w[j++] = l & 0xfffffff;
- }
- return c;
- }
- // We need to select the fastest one that works in this environment.
- //if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- // BigInteger.prototype.am = am2;
- // dbits = 30;
- //} else if (j_lm && (navigator.appName != "Netscape")) {
- // BigInteger.prototype.am = am1;
- // dbits = 26;
- //} else { // Mozilla/Netscape seems to prefer am3
- // BigInteger.prototype.am = am3;
- // dbits = 28;
- //}
- // For node.js, we pick am3 with max dbits to 28.
- BigInteger.prototype.am = am3;
- dbits = 28;
- BigInteger.prototype.DB = dbits;
- BigInteger.prototype.DM = ((1 << dbits) - 1);
- BigInteger.prototype.DV = (1 << dbits);
- var BI_FP = 52;
- BigInteger.prototype.FV = Math.pow(2, BI_FP);
- BigInteger.prototype.F1 = BI_FP - dbits;
- BigInteger.prototype.F2 = 2 * dbits - BI_FP;
- // Digit conversions
- var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
- var BI_RC = new Array();
- var rr, vv;
- rr = "0".charCodeAt(0);
- for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
- rr = "a".charCodeAt(0);
- for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- rr = "A".charCodeAt(0);
- for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- function int2char(n) {
- return BI_RM.charAt(n);
- }
- function intAt(s, i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c == null) ? -1 : c;
- }
- // (protected) copy this to r
- function bnpCopyTo(r) {
- for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
- }
- // (protected) set from integer value x, -DV <= x < DV
- function bnpFromInt(x) {
- this.t = 1;
- this.s = (x < 0) ? -1 : 0;
- if (x > 0) this[0] = x;
- else if (x < -1) this[0] = x + DV;
- else this.t = 0;
- }
- // return bigint initialized to value
- function nbv(i) {
- var r = nbi();
- r.fromInt(i);
- return r;
- }
- // (protected) set from string and radix
- function bnpFromString(data, radix, unsigned) {
- var k;
- switch (radix) {
- case 2:
- k = 1;
- break;
- case 4:
- k = 2;
- break;
- case 8:
- k = 3;
- break;
- case 16:
- k = 4;
- break;
- case 32:
- k = 5;
- break;
- case 256:
- k = 8;
- break;
- default:
- this.fromRadix(data, radix);
- return;
- }
- this.t = 0;
- this.s = 0;
- var i = data.length;
- var mi = false;
- var sh = 0;
- while (--i >= 0) {
- var x = (k == 8) ? data[i] & 0xff : intAt(data, i);
- if (x < 0) {
- if (data.charAt(i) == "-") mi = true;
- continue;
- }
- mi = false;
- if (sh === 0)
- this[this.t++] = x;
- else if (sh + k > this.DB) {
- this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
- this[this.t++] = (x >> (this.DB - sh));
- }
- else
- this[this.t - 1] |= x << sh;
- sh += k;
- if (sh >= this.DB) sh -= this.DB;
- }
- if ((!unsigned) && k == 8 && (data[0] & 0x80) != 0) {
- this.s = -1;
- if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
- }
- this.clamp();
- if (mi) BigInteger.ZERO.subTo(this, this);
- }
- function bnpFromByteArray(a, unsigned) {
- this.fromString(a, 256, unsigned)
- }
- function bnpFromBuffer(a) {
- this.fromString(a, 256, true)
- }
- // (protected) clamp off excess high words
- function bnpClamp() {
- var c = this.s & this.DM;
- while (this.t > 0 && this[this.t - 1] == c) --this.t;
- }
- // (public) return string representation in given radix
- function bnToString(b) {
- if (this.s < 0) return "-" + this.negate().toString(b);
- var k;
- if (b == 16) k = 4;
- else if (b == 8) k = 3;
- else if (b == 2) k = 1;
- else if (b == 32) k = 5;
- else if (b == 4) k = 2;
- else return this.toRadix(b);
- var km = (1 << k) - 1, d, m = false, r = "", i = this.t;
- var p = this.DB - (i * this.DB) % k;
- if (i-- > 0) {
- if (p < this.DB && (d = this[i] >> p) > 0) {
- m = true;
- r = int2char(d);
- }
- while (i >= 0) {
- if (p < k) {
- d = (this[i] & ((1 << p) - 1)) << (k - p);
- d |= this[--i] >> (p += this.DB - k);
- }
- else {
- d = (this[i] >> (p -= k)) & km;
- if (p <= 0) {
- p += this.DB;
- --i;
- }
- }
- if (d > 0) m = true;
- if (m) r += int2char(d);
- }
- }
- return m ? r : "0";
- }
- // (public) -this
- function bnNegate() {
- var r = nbi();
- BigInteger.ZERO.subTo(this, r);
- return r;
- }
- // (public) |this|
- function bnAbs() {
- return (this.s < 0) ? this.negate() : this;
- }
- // (public) return + if this > a, - if this < a, 0 if equal
- function bnCompareTo(a) {
- var r = this.s - a.s;
- if (r != 0) return r;
- var i = this.t;
- r = i - a.t;
- if (r != 0) return (this.s < 0) ? -r : r;
- while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
- return 0;
- }
- // returns bit length of the integer x
- function nbits(x) {
- var r = 1, t;
- if ((t = x >>> 16) != 0) {
- x = t;
- r += 16;
- }
- if ((t = x >> 8) != 0) {
- x = t;
- r += 8;
- }
- if ((t = x >> 4) != 0) {
- x = t;
- r += 4;
- }
- if ((t = x >> 2) != 0) {
- x = t;
- r += 2;
- }
- if ((t = x >> 1) != 0) {
- x = t;
- r += 1;
- }
- return r;
- }
- // (public) return the number of bits in "this"
- function bnBitLength() {
- if (this.t <= 0) return 0;
- return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
- }
- // (protected) r = this << n*DB
- function bnpDLShiftTo(n, r) {
- var i;
- for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
- for (i = n - 1; i >= 0; --i) r[i] = 0;
- r.t = this.t + n;
- r.s = this.s;
- }
- // (protected) r = this >> n*DB
- function bnpDRShiftTo(n, r) {
- for (var i = n; i < this.t; ++i) r[i - n] = this[i];
- r.t = Math.max(this.t - n, 0);
- r.s = this.s;
- }
- // (protected) r = this << n
- function bnpLShiftTo(n, r) {
- var bs = n % this.DB;
- var cbs = this.DB - bs;
- var bm = (1 << cbs) - 1;
- var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i;
- for (i = this.t - 1; i >= 0; --i) {
- r[i + ds + 1] = (this[i] >> cbs) | c;
- c = (this[i] & bm) << bs;
- }
- for (i = ds - 1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t + ds + 1;
- r.s = this.s;
- r.clamp();
- }
- // (protected) r = this >> n
- function bnpRShiftTo(n, r) {
- r.s = this.s;
- var ds = Math.floor(n / this.DB);
- if (ds >= this.t) {
- r.t = 0;
- return;
- }
- var bs = n % this.DB;
- var cbs = this.DB - bs;
- var bm = (1 << bs) - 1;
- r[0] = this[ds] >> bs;
- for (var i = ds + 1; i < this.t; ++i) {
- r[i - ds - 1] |= (this[i] & bm) << cbs;
- r[i - ds] = this[i] >> bs;
- }
- if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
- r.t = this.t - ds;
- r.clamp();
- }
- // (protected) r = this - a
- function bnpSubTo(a, r) {
- var i = 0, c = 0, m = Math.min(a.t, this.t);
- while (i < m) {
- c += this[i] - a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- if (a.t < this.t) {
- c -= a.s;
- while (i < this.t) {
- c += this[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while (i < a.t) {
- c -= a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c -= a.s;
- }
- r.s = (c < 0) ? -1 : 0;
- if (c < -1) r[i++] = this.DV + c;
- else if (c > 0) r[i++] = c;
- r.t = i;
- r.clamp();
- }
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- function bnpMultiplyTo(a, r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i + y.t;
- while (--i >= 0) r[i] = 0;
- for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
- r.s = 0;
- r.clamp();
- if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
- }
- // (protected) r = this^2, r != this (HAC 14.16)
- function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2 * x.t;
- while (--i >= 0) r[i] = 0;
- for (i = 0; i < x.t - 1; ++i) {
- var c = x.am(i, x[i], r, 2 * i, 0, 1);
- if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
- r[i + x.t] -= x.DV;
- r[i + x.t + 1] = 1;
- }
- }
- if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
- r.s = 0;
- r.clamp();
- }
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- function bnpDivRemTo(m, q, r) {
- var pm = m.abs();
- if (pm.t <= 0) return;
- var pt = this.abs();
- if (pt.t < pm.t) {
- if (q != null) q.fromInt(0);
- if (r != null) this.copyTo(r);
- return;
- }
- if (r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
- if (nsh > 0) {
- pm.lShiftTo(nsh, y);
- pt.lShiftTo(nsh, r);
- }
- else {
- pm.copyTo(y);
- pt.copyTo(r);
- }
- var ys = y.t;
- var y0 = y[ys - 1];
- if (y0 === 0) return;
- var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
- var d1 = this.FV / yt, d2 = (1 << this.F1) / yt, e = 1 << this.F2;
- var i = r.t, j = i - ys, t = (q == null) ? nbi() : q;
- y.dlShiftTo(j, t);
- if (r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t, r);
- }
- BigInteger.ONE.dlShiftTo(ys, t);
- t.subTo(y, y); // "negative" y so we can replace sub with am later
- while (y.t < ys) y[y.t++] = 0;
- while (--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
- if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
- y.dlShiftTo(j, t);
- r.subTo(t, r);
- while (r[i] < --qd) r.subTo(t, r);
- }
- }
- if (q != null) {
- r.drShiftTo(ys, q);
- if (ts != ms) BigInteger.ZERO.subTo(q, q);
- }
- r.t = ys;
- r.clamp();
- if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
- if (ts < 0) BigInteger.ZERO.subTo(r, r);
- }
- // (public) this mod a
- function bnMod(a) {
- var r = nbi();
- this.abs().divRemTo(a, null, r);
- if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
- return r;
- }
- // Modular reduction using "classic" algorithm
- function Classic(m) {
- this.m = m;
- }
- function cConvert(x) {
- if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
- }
- function cRevert(x) {
- return x;
- }
- function cReduce(x) {
- x.divRemTo(this.m, null, x);
- }
- function cMulTo(x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- }
- function cSqrTo(x, r) {
- x.squareTo(r);
- this.reduce(r);
- }
- Classic.prototype.convert = cConvert;
- Classic.prototype.revert = cRevert;
- Classic.prototype.reduce = cReduce;
- Classic.prototype.mulTo = cMulTo;
- Classic.prototype.sqrTo = cSqrTo;
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- function bnpInvDigit() {
- if (this.t < 1) return 0;
- var x = this[0];
- if ((x & 1) === 0) return 0;
- var y = x & 3; // y == 1/x mod 2^2
- y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
- y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
- y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y > 0) ? this.DV - y : -y;
- }
- // Montgomery reduction
- function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp & 0x7fff;
- this.mph = this.mp >> 15;
- this.um = (1 << (m.DB - 15)) - 1;
- this.mt2 = 2 * m.t;
- }
- // xR mod m
- function montConvert(x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t, r);
- r.divRemTo(this.m, null, r);
- if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
- return r;
- }
- // x/R mod m
- function montRevert(x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
- // x = x/R mod m (HAC 14.32)
- function montReduce(x) {
- while (x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for (var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i] & 0x7fff;
- var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i + this.m.t;
- x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
- // propagate carry
- while (x[j] >= x.DV) {
- x[j] -= x.DV;
- x[++j]++;
- }
- }
- x.clamp();
- x.drShiftTo(this.m.t, x);
- if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
- }
- // r = "x^2/R mod m"; x != r
- function montSqrTo(x, r) {
- x.squareTo(r);
- this.reduce(r);
- }
- // r = "xy/R mod m"; x,y != r
- function montMulTo(x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- }
- Montgomery.prototype.convert = montConvert;
- Montgomery.prototype.revert = montRevert;
- Montgomery.prototype.reduce = montReduce;
- Montgomery.prototype.mulTo = montMulTo;
- Montgomery.prototype.sqrTo = montSqrTo;
- // (protected) true iff this is even
- function bnpIsEven() {
- return ((this.t > 0) ? (this[0] & 1) : this.s) === 0;
- }
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- function bnpExp(e, z) {
- if (e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1;
- g.copyTo(r);
- while (--i >= 0) {
- z.sqrTo(r, r2);
- if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
- else {
- var t = r;
- r = r2;
- r2 = t;
- }
- }
- return z.revert(r);
- }
- // (public) this^e % m, 0 <= e < 2^32
- function bnModPowInt(e, m) {
- var z;
- if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this.exp(e, z);
- }
- // Copyright (c) 2005-2009 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
- // Extended JavaScript BN functions, required for RSA private ops.
- // Version 1.1: new BigInteger("0", 10) returns "proper" zero
- // Version 1.2: square() API, isProbablePrime fix
- //(public)
- function bnClone() {
- var r = nbi();
- this.copyTo(r);
- return r;
- }
- //(public) return value as integer
- function bnIntValue() {
- if (this.s < 0) {
- if (this.t == 1) return this[0] - this.DV;
- else if (this.t === 0) return -1;
- }
- else if (this.t == 1) return this[0];
- else if (this.t === 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
- }
- //(public) return value as byte
- function bnByteValue() {
- return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
- }
- //(public) return value as short (assumes DB>=16)
- function bnShortValue() {
- return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
- }
- //(protected) return x s.t. r^x < DV
- function bnpChunkSize(r) {
- return Math.floor(Math.LN2 * this.DB / Math.log(r));
- }
- //(public) 0 if this === 0, 1 if this > 0
- function bnSigNum() {
- if (this.s < 0) return -1;
- else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
- }
- //(protected) convert to radix string
- function bnpToRadix(b) {
- if (b == null) b = 10;
- if (this.signum() === 0 || b < 2 || b > 36) return "0";
- var cs = this.chunkSize(b);
- var a = Math.pow(b, cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this.divRemTo(d, y, z);
- while (y.signum() > 0) {
- r = (a + z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d, y, z);
- }
- return z.intValue().toString(b) + r;
- }
- //(protected) convert from radix string
- function bnpFromRadix(s, b) {
- this.fromInt(0);
- if (b == null) b = 10;
- var cs = this.chunkSize(b);
- var d = Math.pow(b, cs), mi = false, j = 0, w = 0;
- for (var i = 0; i < s.length; ++i) {
- var x = intAt(s, i);
- if (x < 0) {
- if (s.charAt(i) == "-" && this.signum() === 0) mi = true;
- continue;
- }
- w = b * w + x;
- if (++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w, 0);
- j = 0;
- w = 0;
- }
- }
- if (j > 0) {
- this.dMultiply(Math.pow(b, j));
- this.dAddOffset(w, 0);
- }
- if (mi) BigInteger.ZERO.subTo(this, this);
- }
- //(protected) alternate constructor
- function bnpFromNumber(a, b) {
- if ("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if (a < 2) this.fromInt(1);
- else {
- this.fromNumber(a);
- if (!this.testBit(a - 1)) // force MSB set
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
- if (this.isEven()) this.dAddOffset(1, 0); // force odd
- while (!this.isProbablePrime(b)) {
- this.dAddOffset(2, 0);
- if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
- }
- }
- } else {
- // new BigInteger(int,RNG)
- var x = crypt.randomBytes((a >> 3) + 1)
- var t = a & 7;
- if (t > 0)
- x[0] &= ((1 << t) - 1);
- else
- x[0] = 0;
- this.fromByteArray(x);
- }
- }
- //(public) convert to bigendian byte array
- function bnToByteArray() {
- var i = this.t, r = new Array();
- r[0] = this.s;
- var p = this.DB - (i * this.DB) % 8, d, k = 0;
- if (i-- > 0) {
- if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
- r[k++] = d | (this.s << (this.DB - p));
- while (i >= 0) {
- if (p < 8) {
- d = (this[i] & ((1 << p) - 1)) << (8 - p);
- d |= this[--i] >> (p += this.DB - 8);
- }
- else {
- d = (this[i] >> (p -= 8)) & 0xff;
- if (p <= 0) {
- p += this.DB;
- --i;
- }
- }
- if ((d & 0x80) != 0) d |= -256;
- if (k === 0 && (this.s & 0x80) != (d & 0x80)) ++k;
- if (k > 0 || d != this.s) r[k++] = d;
- }
- }
- return r;
- }
- /**
- * return Buffer object
- * @param trim {boolean} slice buffer if first element == 0
- * @returns {Buffer}
- */
- function bnToBuffer(trimOrSize) {
- var res = Buffer.from(this.toByteArray());
- if (trimOrSize === true && res[0] === 0) {
- res = res.slice(1);
- } else if (isNumber(trimOrSize)) {
- if (res.length > trimOrSize) {
- for (var i = 0; i < res.length - trimOrSize; i++) {
- if (res[i] !== 0) {
- return null;
- }
- }
- return res.slice(res.length - trimOrSize);
- } else if (res.length < trimOrSize) {
- var padded = Buffer.alloc(trimOrSize);
- padded.fill(0, 0, trimOrSize - res.length);
- res.copy(padded, trimOrSize - res.length);
- return padded;
- }
- }
- return res;
- }
- function bnEquals(a) {
- return (this.compareTo(a) == 0);
- }
- function bnMin(a) {
- return (this.compareTo(a) < 0) ? this : a;
- }
- function bnMax(a) {
- return (this.compareTo(a) > 0) ? this : a;
- }
- //(protected) r = this op a (bitwise)
- function bnpBitwiseTo(a, op, r) {
- var i, f, m = Math.min(a.t, this.t);
- for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
- if (a.t < this.t) {
- f = a.s & this.DM;
- for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
- r.t = this.t;
- }
- else {
- f = this.s & this.DM;
- for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
- r.t = a.t;
- }
- r.s = op(this.s, a.s);
- r.clamp();
- }
- //(public) this & a
- function op_and(x, y) {
- return x & y;
- }
- function bnAnd(a) {
- var r = nbi();
- this.bitwiseTo(a, op_and, r);
- return r;
- }
- //(public) this | a
- function op_or(x, y) {
- return x | y;
- }
- function bnOr(a) {
- var r = nbi();
- this.bitwiseTo(a, op_or, r);
- return r;
- }
- //(public) this ^ a
- function op_xor(x, y) {
- return x ^ y;
- }
- function bnXor(a) {
- var r = nbi();
- this.bitwiseTo(a, op_xor, r);
- return r;
- }
- //(public) this & ~a
- function op_andnot(x, y) {
- return x & ~y;
- }
- function bnAndNot(a) {
- var r = nbi();
- this.bitwiseTo(a, op_andnot, r);
- return r;
- }
- //(public) ~this
- function bnNot() {
- var r = nbi();
- for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
- r.t = this.t;
- r.s = ~this.s;
- return r;
- }
- //(public) this << n
- function bnShiftLeft(n) {
- var r = nbi();
- if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r);
- return r;
- }
- //(public) this >> n
- function bnShiftRight(n) {
- var r = nbi();
- if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r);
- return r;
- }
- //return index of lowest 1-bit in x, x < 2^31
- function lbit(x) {
- if (x === 0) return -1;
- var r = 0;
- if ((x & 0xffff) === 0) {
- x >>= 16;
- r += 16;
- }
- if ((x & 0xff) === 0) {
- x >>= 8;
- r += 8;
- }
- if ((x & 0xf) === 0) {
- x >>= 4;
- r += 4;
- }
- if ((x & 3) === 0) {
- x >>= 2;
- r += 2;
- }
- if ((x & 1) === 0) ++r;
- return r;
- }
- //(public) returns index of lowest 1-bit (or -1 if none)
- function bnGetLowestSetBit() {
- for (var i = 0; i < this.t; ++i)
- if (this[i] != 0) return i * this.DB + lbit(this[i]);
- if (this.s < 0) return this.t * this.DB;
- return -1;
- }
- //return number of 1 bits in x
- function cbit(x) {
- var r = 0;
- while (x != 0) {
- x &= x - 1;
- ++r;
- }
- return r;
- }
- //(public) return number of set bits
- function bnBitCount() {
- var r = 0, x = this.s & this.DM;
- for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
- return r;
- }
- //(public) true iff nth bit is set
- function bnTestBit(n) {
- var j = Math.floor(n / this.DB);
- if (j >= this.t) return (this.s != 0);
- return ((this[j] & (1 << (n % this.DB))) != 0);
- }
- //(protected) this op (1<<n)
- function bnpChangeBit(n, op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this.bitwiseTo(r, op, r);
- return r;
- }
- //(public) this | (1<<n)
- function bnSetBit(n) {
- return this.changeBit(n, op_or);
- }
- //(public) this & ~(1<<n)
- function bnClearBit(n) {
- return this.changeBit(n, op_andnot);
- }
- //(public) this ^ (1<<n)
- function bnFlipBit(n) {
- return this.changeBit(n, op_xor);
- }
- //(protected) r = this + a
- function bnpAddTo(a, r) {
- var i = 0, c = 0, m = Math.min(a.t, this.t);
- while (i < m) {
- c += this[i] + a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- if (a.t < this.t) {
- c += a.s;
- while (i < this.t) {
- c += this[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while (i < a.t) {
- c += a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += a.s;
- }
- r.s = (c < 0) ? -1 : 0;
- if (c > 0) r[i++] = c;
- else if (c < -1) r[i++] = this.DV + c;
- r.t = i;
- r.clamp();
- }
- //(public) this + a
- function bnAdd(a) {
- var r = nbi();
- this.addTo(a, r);
- return r;
- }
- //(public) this - a
- function bnSubtract(a) {
- var r = nbi();
- this.subTo(a, r);
- return r;
- }
- //(public) this * a
- function bnMultiply(a) {
- var r = nbi();
- this.multiplyTo(a, r);
- return r;
- }
- // (public) this^2
- function bnSquare() {
- var r = nbi();
- this.squareTo(r);
- return r;
- }
- //(public) this / a
- function bnDivide(a) {
- var r = nbi();
- this.divRemTo(a, r, null);
- return r;
- }
- //(public) this % a
- function bnRemainder(a) {
- var r = nbi();
- this.divRemTo(a, null, r);
- return r;
- }
- //(public) [this/a,this%a]
- function bnDivideAndRemainder(a) {
- var q = nbi(), r = nbi();
- this.divRemTo(a, q, r);
- return new Array(q, r);
- }
- //(protected) this *= n, this >= 0, 1 < n < DV
- function bnpDMultiply(n) {
- this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
- ++this.t;
- this.clamp();
- }
- //(protected) this += n << w words, this >= 0
- function bnpDAddOffset(n, w) {
- if (n === 0) return;
- while (this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while (this[w] >= this.DV) {
- this[w] -= this.DV;
- if (++w >= this.t) this[this.t++] = 0;
- ++this[w];
- }
- }
- //A "null" reducer
- function NullExp() {
- }
- function nNop(x) {
- return x;
- }
- function nMulTo(x, y, r) {
- x.multiplyTo(y, r);
- }
- function nSqrTo(x, r) {
- x.squareTo(r);
- }
- NullExp.prototype.convert = nNop;
- NullExp.prototype.revert = nNop;
- NullExp.prototype.mulTo = nMulTo;
- NullExp.prototype.sqrTo = nSqrTo;
- //(public) this^e
- function bnPow(e) {
- return this.exp(e, new NullExp());
- }
- //(protected) r = lower n words of "this * a", a.t <= n
- //"this" should be the larger one if appropriate.
- function bnpMultiplyLowerTo(a, n, r) {
- var i = Math.min(this.t + a.t, n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while (i > 0) r[--i] = 0;
- var j;
- for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
- for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
- r.clamp();
- }
- //(protected) r = "this * a" without lower n words, n > 0
- //"this" should be the larger one if appropriate.
- function bnpMultiplyUpperTo(a, n, r) {
- --n;
- var i = r.t = this.t + a.t - n;
- r.s = 0; // assumes a,this >= 0
- while (--i >= 0) r[i] = 0;
- for (i = Math.max(n - this.t, 0); i < a.t; ++i)
- r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
- r.clamp();
- r.drShiftTo(1, r);
- }
- //Barrett modular reduction
- function Barrett(m) {
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
- this.mu = this.r2.divide(m);
- this.m = m;
- }
- function barrettConvert(x) {
- if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
- else if (x.compareTo(this.m) < 0) return x;
- else {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
- }
- function barrettRevert(x) {
- return x;
- }
- //x = x mod m (HAC 14.42)
- function barrettReduce(x) {
- x.drShiftTo(this.m.t - 1, this.r2);
- if (x.t > this.m.t + 1) {
- x.t = this.m.t + 1;
- x.clamp();
- }
- this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
- this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
- while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
- x.subTo(this.r2, x);
- while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
- }
- //r = x^2 mod m; x != r
- function barrettSqrTo(x, r) {
- x.squareTo(r);
- this.reduce(r);
- }
- //r = x*y mod m; x,y != r
- function barrettMulTo(x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- }
- Barrett.prototype.convert = barrettConvert;
- Barrett.prototype.revert = barrettRevert;
- Barrett.prototype.reduce = barrettReduce;
- Barrett.prototype.mulTo = barrettMulTo;
- Barrett.prototype.sqrTo = barrettSqrTo;
- //(public) this^e % m (HAC 14.85)
- function bnModPow(e, m) {
- var i = e.bitLength(), k, r = nbv(1), z;
- if (i <= 0) return r;
- else if (i < 18) k = 1;
- else if (i < 48) k = 3;
- else if (i < 144) k = 4;
- else if (i < 768) k = 5;
- else k = 6;
- if (i < 8)
- z = new Classic(m);
- else if (m.isEven())
- z = new Barrett(m);
- else
- z = new Montgomery(m);
- // precomputation
- var g = new Array(), n = 3, k1 = k - 1, km = (1 << k) - 1;
- g[1] = z.convert(this);
- if (k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1], g2);
- while (n <= km) {
- g[n] = nbi();
- z.mulTo(g2, g[n - 2], g[n]);
- n += 2;
- }
- }
- var j = e.t - 1, w, is1 = true, r2 = nbi(), t;
- i = nbits(e[j]) - 1;
- while (j >= 0) {
- if (i >= k1) w = (e[j] >> (i - k1)) & km;
- else {
- w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
- if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
- }
- n = k;
- while ((w & 1) === 0) {
- w >>= 1;
- --n;
- }
- if ((i -= n) < 0) {
- i += this.DB;
- --j;
- }
- if (is1) { // ret == 1, don't bother squaring or multiplying it
- g[w].copyTo(r);
- is1 = false;
- }
- else {
- while (n > 1) {
- z.sqrTo(r, r2);
- z.sqrTo(r2, r);
- n -= 2;
- }
- if (n > 0) z.sqrTo(r, r2); else {
- t = r;
- r = r2;
- r2 = t;
- }
- z.mulTo(r2, g[w], r);
- }
- while (j >= 0 && (e[j] & (1 << i)) === 0) {
- z.sqrTo(r, r2);
- t = r;
- r = r2;
- r2 = t;
- if (--i < 0) {
- i = this.DB - 1;
- --j;
- }
- }
- }
- return z.revert(r);
- }
- //(public) gcd(this,a) (HAC 14.54)
- function bnGCD(a) {
- var x = (this.s < 0) ? this.negate() : this.clone();
- var y = (a.s < 0) ? a.negate() : a.clone();
- if (x.compareTo(y) < 0) {
- var t = x;
- x = y;
- y = t;
- }
- var i = x.getLowestSetBit(), g = y.getLowestSetBit();
- if (g < 0) return x;
- if (i < g) g = i;
- if (g > 0) {
- x.rShiftTo(g, x);
- y.rShiftTo(g, y);
- }
- while (x.signum() > 0) {
- if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
- if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
- if (x.compareTo(y) >= 0) {
- x.subTo(y, x);
- x.rShiftTo(1, x);
- }
- else {
- y.subTo(x, y);
- y.rShiftTo(1, y);
- }
- }
- if (g > 0) y.lShiftTo(g, y);
- return y;
- }
- //(protected) this % n, n < 2^26
- function bnpModInt(n) {
- if (n <= 0) return 0;
- var d = this.DV % n, r = (this.s < 0) ? n - 1 : 0;
- if (this.t > 0)
- if (d === 0) r = this[0] % n;
- else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
- return r;
- }
- //(public) 1/this % m (HAC 14.61)
- function bnModInverse(m) {
- var ac = m.isEven();
- if ((this.isEven() && ac) || m.signum() === 0) return BigInteger.ZERO;
- var u = m.clone(), v = this.clone();
- var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
- while (u.signum() != 0) {
- while (u.isEven()) {
- u.rShiftTo(1, u);
- if (ac) {
- if (!a.isEven() || !b.isEven()) {
- a.addTo(this, a);
- b.subTo(m, b);
- }
- a.rShiftTo(1, a);
- }
- else if (!b.isEven()) b.subTo(m, b);
- b.rShiftTo(1, b);
- }
- while (v.isEven()) {
- v.rShiftTo(1, v);
- if (ac) {
- if (!c.isEven() || !d.isEven()) {
- c.addTo(this, c);
- d.subTo(m, d);
- }
- c.rShiftTo(1, c);
- }
- else if (!d.isEven()) d.subTo(m, d);
- d.rShiftTo(1, d);
- }
- if (u.compareTo(v) >= 0) {
- u.subTo(v, u);
- if (ac) a.subTo(c, a);
- b.subTo(d, b);
- }
- else {
- v.subTo(u, v);
- if (ac) c.subTo(a, c);
- d.subTo(b, d);
- }
- }
- if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
- if (d.compareTo(m) >= 0) return d.subtract(m);
- if (d.signum() < 0) d.addTo(m, d); else return d;
- if (d.signum() < 0) return d.add(m); else return d;
- }
- var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
- var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
- //(public) test primality with certainty >= 1-.5^t
- function bnIsProbablePrime(t) {
- var i, x = this.abs();
- if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
- for (i = 0; i < lowprimes.length; ++i)
- if (x[0] == lowprimes[i]) return true;
- return false;
- }
- if (x.isEven()) return false;
- i = 1;
- while (i < lowprimes.length) {
- var m = lowprimes[i], j = i + 1;
- while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
- m = x.modInt(m);
- while (i < j) if (m % lowprimes[i++] === 0) return false;
- }
- return x.millerRabin(t);
- }
- //(protected) true if probably prime (HAC 4.24, Miller-Rabin)
- function bnpMillerRabin(t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if (k <= 0) return false;
- var r = n1.shiftRight(k);
- t = (t + 1) >> 1;
- if (t > lowprimes.length) t = lowprimes.length;
- var a = nbi();
- for (var i = 0; i < t; ++i) {
- //Pick bases at random, instead of starting at 2
- a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
- var y = a.modPow(r, this);
- if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while (j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2, this);
- if (y.compareTo(BigInteger.ONE) === 0) return false;
- }
- if (y.compareTo(n1) != 0) return false;
- }
- }
- return true;
- }
- // protected
- BigInteger.prototype.copyTo = bnpCopyTo;
- BigInteger.prototype.fromInt = bnpFromInt;
- BigInteger.prototype.fromString = bnpFromString;
- BigInteger.prototype.fromByteArray = bnpFromByteArray;
- BigInteger.prototype.fromBuffer = bnpFromBuffer;
- BigInteger.prototype.clamp = bnpClamp;
- BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
- BigInteger.prototype.drShiftTo = bnpDRShiftTo;
- BigInteger.prototype.lShiftTo = bnpLShiftTo;
- BigInteger.prototype.rShiftTo = bnpRShiftTo;
- BigInteger.prototype.subTo = bnpSubTo;
- BigInteger.prototype.multiplyTo = bnpMultiplyTo;
- BigInteger.prototype.squareTo = bnpSquareTo;
- BigInteger.prototype.divRemTo = bnpDivRemTo;
- BigInteger.prototype.invDigit = bnpInvDigit;
- BigInteger.prototype.isEven = bnpIsEven;
- BigInteger.prototype.exp = bnpExp;
- BigInteger.prototype.chunkSize = bnpChunkSize;
- BigInteger.prototype.toRadix = bnpToRadix;
- BigInteger.prototype.fromRadix = bnpFromRadix;
- BigInteger.prototype.fromNumber = bnpFromNumber;
- BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
- BigInteger.prototype.changeBit = bnpChangeBit;
- BigInteger.prototype.addTo = bnpAddTo;
- BigInteger.prototype.dMultiply = bnpDMultiply;
- BigInteger.prototype.dAddOffset = bnpDAddOffset;
- BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
- BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
- BigInteger.prototype.modInt = bnpModInt;
- BigInteger.prototype.millerRabin = bnpMillerRabin;
- // public
- BigInteger.prototype.toString = bnToString;
- BigInteger.prototype.negate = bnNegate;
- BigInteger.prototype.abs = bnAbs;
- BigInteger.prototype.compareTo = bnCompareTo;
- BigInteger.prototype.bitLength = bnBitLength;
- BigInteger.prototype.mod = bnMod;
- BigInteger.prototype.modPowInt = bnModPowInt;
- BigInteger.prototype.clone = bnClone;
- BigInteger.prototype.intValue = bnIntValue;
- BigInteger.prototype.byteValue = bnByteValue;
- BigInteger.prototype.shortValue = bnShortValue;
- BigInteger.prototype.signum = bnSigNum;
- BigInteger.prototype.toByteArray = bnToByteArray;
- BigInteger.prototype.toBuffer = bnToBuffer;
- BigInteger.prototype.equals = bnEquals;
- BigInteger.prototype.min = bnMin;
- BigInteger.prototype.max = bnMax;
- BigInteger.prototype.and = bnAnd;
- BigInteger.prototype.or = bnOr;
- BigInteger.prototype.xor = bnXor;
- BigInteger.prototype.andNot = bnAndNot;
- BigInteger.prototype.not = bnNot;
- BigInteger.prototype.shiftLeft = bnShiftLeft;
- BigInteger.prototype.shiftRight = bnShiftRight;
- BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
- BigInteger.prototype.bitCount = bnBitCount;
- BigInteger.prototype.testBit = bnTestBit;
- BigInteger.prototype.setBit = bnSetBit;
- BigInteger.prototype.clearBit = bnClearBit;
- BigInteger.prototype.flipBit = bnFlipBit;
- BigInteger.prototype.add = bnAdd;
- BigInteger.prototype.subtract = bnSubtract;
- BigInteger.prototype.multiply = bnMultiply;
- BigInteger.prototype.divide = bnDivide;
- BigInteger.prototype.remainder = bnRemainder;
- BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
- BigInteger.prototype.modPow = bnModPow;
- BigInteger.prototype.modInverse = bnModInverse;
- BigInteger.prototype.pow = bnPow;
- BigInteger.prototype.gcd = bnGCD;
- BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
- BigInteger.int2char = int2char;
- // "constants"
- BigInteger.ZERO = nbv(0);
- BigInteger.ONE = nbv(1);
- // JSBN-specific extension
- BigInteger.prototype.square = bnSquare;
- //BigInteger interfaces not implemented in jsbn:
- //BigInteger(int signum, byte[] magnitude)
- //double doubleValue()
- //float floatValue()
- //int hashCode()
- //long longValue()
- //static BigInteger valueOf(long val)
- module.exports = BigInteger;
|